

integration with integrity

2808010 User's Manual Mini-ITX Mainboard Version 1.0

Copyrights

This document is copyrighted and all rights are reserved. It does not allow any non authorization in copied, photocopied, translated or reproduced to any electronic or machine readable form in whole or in part without prior written consent from the manufacturer.

In general, the manufacturer will not be liable for any direct, indirect, special, incidental or consequential damages arising from the use of inability to use the product or documentation, even if advised of the possibility of such damages. The manufacturer keeps the rights in the subject to change the contents of this document without prior notices in order to improve the function design, performance, quality and reliability. The author assumes no responsibility for any errors or omissions, which may appear in this document, nor does it make a commitment to update the information contained herein.

Trademarks

Intel is a registered trademark of Intel Corporation. Award is a registered trademark of Award Software, Inc.

All other trademarks, products and or product's name mentioned herein are mentioned for identification purposes only, and may be trademarks and/or registered trademarks of their respective companies or owners.

Safety Instructions

- 1. Always read the safety instructions carefully.
- 2. Keep this User's Manual for future reference.
- 3. Keep this equipment away from humidity.
- 4. Lay this equipment on a reliable flat surface before setting it up.
- The openings on the enclosure are for air convection hence protects the equipment from overheating. DO NOT COVER THE OPENINGS.
- Make sure the voltage of the power source and adjust properly 110/220V before connecting the equipment to the power inlet.
- Place the power cord such a way that people can not step on it. Do not place anything over the power cord.
- 8. Always Unplug the Power Cord before inserting any add-on card or module.
- 9. All cautions and warnings on the equipment should be noted.
- Never pour any liquid into the opening that could damage or cause electrical shock.
- 11. If any of the following situations arises, get the equipment checked by service personnel:
 - † The power cord or plug is damaged.
 - † Liquid has penetrated into the equipment.
 - † The equipment has been exposed to moisture.
 - † The equipment does not work well or you can not get it work according to User's Manual.
 - † The equipment has dropped and damaged.
 - † The equipment has obvious sign of breakage.
- DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT UNCONDITIONED, STOR-AGE TEMPERATURE ABOVE 60°C (140°F), IT MAY DAMAGE THE EQUIPMENT.

CAUTION: Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer.

▲ 警告使用者:

"是只们们" 這是甲類的資訊產品,在居住的環境中使用時,可能會造成無線電干擾, 在這種情況下,使用者會被要求採取某些適當的對策。

廢電池請回收

For better environmental protection, waste batteries should be collected separately for recycling or special disposal.

FCC-B Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class B

digital device, pursuant to Part

15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the measures listed below.

- † Reorient or relocate the receiving antenna.
- † Increase the separation between the equipment and receiver.
- † Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- † Consult the dealer or an experienced radio/television technician for help.

Notice 1

The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Notice 2

Shielded interface cables and A.C. power cord, if any, must be used in order to comply with the emission limits.

VOIR LANOTICE D'INSTALLATION AVANT DE RACCORDER AU RESEAU.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

CONTENTS

Technical Supportiii
Safety Instructionsiii
FCC-B Radio Frequency Interference Statementv
WEEE (Waste Electrical and Electronic Equipment) Statementv
Chapter 1 Product Overview1-1
Mainboard Layout1-2
Chapter 2 Product Specifications2-1
Mainboard Specifications
Safety Compliance & MTBF2-5
Block Diagram
Board Dimension2-7
I/O Shield Drawing2-7
Chapter 3 Electrical Specifications3-1
Power Consumption
General Purpose I/O Lines
Onboard Connector
Chapter 4 Hardware Setup4-1
Quick Components Guide4-2
Memory4-3
Power Supply4-4
Back Panel4-5
Connectors4-7
Jumpers
Slots
Chapter 5 BIOS Setup5-1
Entering Setup5-2
The Menu Bar5-4
Main5-5
Advanced5-7
Boot
System
Security
PCHealth
Exit
Chapter 6 System Resources6-1
Watch Dog Timer Setting6-3
Award POST Code6-4
Check Point & Beep Code List6-10
PCI Configuration6-16
Resource List

Thank you for choosing the Fuzzy 2808010 Mini ITX mainboard from GAI.

Noiseless, fanless and low power consumption are the advantages of the Fuzzy CX700/CX700D, making it an ideal choice for IPC special application.

2808010 Mini ITX Mainboard

Chapter 2 Product Specifications

Based on the innovative VIA CX700/ CX700M/ CX700MZ controller for optimal system efficiency, the Fuzzy CX700/CX700D accommodates VIA C7/ Eden/Eden ULV processor and supports one 240-pin 400/533MHz DDR2 DIMM slot to provide the maximum of 1GB memory capacity.

Mainboard Specifications

Processor Support

- VIA C7/ Eden/ Eden ULV processor with nanoBGA2 footprint
- 3-pin CPU fan pinheader with Smart Fan Speed Control
- Power Saver™ Technology enabled

CPU Frequency

- 1GHz, 1.5GHz, or 2GHz (Optional)
- Supports FSB to 400/800MHz (Optional)

Chipset

- Single chip solution: VIA CX700/ CX700M/ CX700M2

Memory Support

- DDR2 400/533 SDRAM or ECC DDR2 400 only (1GB Max)
- 1 DDR2 DIMM slot (240pin / 1.8V)

LAN

- 2 PCI Gb LAN by Realtek RTL8110SC

Audio

Realtek ALC888 7.1-channel HDA codec
 6 watt amplifier

IDE

- 1 40-pin IDE connector
- Supports 2 IDE devices

CF

- 1 CF Type II socket

SATA

- 2 SATA II ports by VIA CX700/ CX700M/ CX700M2
- Supports storage and data transfers at up to 300MB/s

Expansion Slots

- 1 PCI slot
- 1 Mini PCI socket

Connectors
 Rear I/O 1 PS/2 mouse port 1 PS/2 keyboard port 1 COM port stack connector (2 RS-232 ports) 1 VGA/ DVI stack connector 2 RJ45/ USB stack connectors 1 3-jack audio connector
 Onboard Connector 1 USB connector (2 ports) 1 parallel port connector (LPT) 2 COM port connectors (RS-232) 1 LVDS connector 1 DIO connector (4 IN/4 OUT) 1 TV-Out connector (7.1-channel) 1 anglifier connector 1 front panel connector 1 SMBUS connector 1 SMBUS connector 1 System fan connector 2 SATA connectors
Form Factor
- Mini-ITX (17.0cm X17.0cm) Mounting
- 4 mounting holes
Environmental
Operating Temperature - Temperature: 0°C ~ 60°C - Humidity: 0% ~ 85% RH Storage Temperature - Temperature: -20°C ~ 80°C - Humidity: 25% ~ 90% RH

Safety Compliance & MTBF

Certification		Standard number	Title of standard
		EN 55022:1998+A1:2000+A2:2003 Class B	Product family standard
		EN 6100-3-2:2000 Class D	Limits for harmonic current
	REI	EN 0100-3-2.2000 01833 D	emission
CE	NT I		Limitation of voltage
		EN 6100-3-3:1995+A1:2001	fluctuation and flicker in low-
			voltage supply system
	Immunity	EN 55024:1998+A1:2001+A2:2003	Product family standard
BSMI	CNS 1343	38 乙類(1997年版)	
C-Tick	AS/NZS (CISPR 22:2004	
FCC	FCC CFR	Title 47 Part 15 Subpart B: 2005 Class B	
FUC	CISPR 22	2005	
1/001	VCCI V-3	:2004, Class B	
VCCI	VCCI V-4	2004, Class B	

MTBF - Reliability Prediction

Calculation Model	Operation Temperature	Operating Environment	Duty Cycle	MTBF
Telcordia Issue 1	35	Ground Benign	100%	186,718
MIL-HDBK-217 FN2	55	Ground Mobile	100%	3,182

Product Specifications

Block Diagram

Board Dimension

Product Specifications

I/O Shield Drawing

Power Consumption

Configuration CPU : VIA C7 1GHz Memory : Samsung PC2-3200 1GB SATA HDD : HITACHI 80GB SATA HDD : Maxtor 80GB CDROM : Samsung CD-RW/DVD

Power Consumption										
	Mainboard +3.3V	Mainboard +5V	Mainboard 5VSB	Mainboard +12V	System Consumption					
	Current (A)	Watts								
A. Full Running (CPU / Memory / HDD / LAN stress & Play Audio CD)	1.33	1.07	0.04	0.67	18.0773					
B. Running Network Application - Files Copy	1.33	1.04	0.039	0.6	17.0905					
C. Idle	0.56	0.94	0.04	0.39	11.482					
D. S3 Mode	0	0	0.318	0	1.6345					
E. Running 3D stress	1.972	6.2115	0.1748	7.709	16.0673					

General Purpose I/O Lines

General Purpose I/O Lines								
Parameter	Conditions	Min	Max					
Input High Voltage (VIH)	-	2V	2V					
Input High Voltage (VIL)	-	-0.5V	0.8V					
Input Current (II)	-	-	+(-)1uA					
Out High Voltage (VoH)	IOH = -50uA	4.4V	-					
Out high voltage (voh)	IOH = -16uA	3.8V	-					
Out Low Voltage (Vol.)	IOL = 50uA	-	0.1V					
Out Low Voltage (VOL)	IOH = 16uA	-	0.55V					

Onboard Connector

Onboard Connector	Description
DC 12V power connector	2x2-pin, 4.2mm
AMP audio header	1x4-pin, 2.54mm
GPIO box header	2x5-pin, 2mm
Parallel port box header	2x13-pin, 2mm
LVDS panel box header	2x20pin, 1.25mm
RS-232 box header (internal)	2x5pin, 2.54mm (take out of 1-pin)
TV-OUT header	2x3-pin, 2.54mm (take out of 1-pin)
Front panel I/O header	2x5-pin, 2.54mm (take out of 1-pin)
IrDA header	2x3-pin, 2.54mm (take out of 1-pin)
USB header (internal)	2x5-pin, 2.54mm (take out of 1-pin)
Front audio header	2x7-pin, 2.54mm (take out of 1-pin)

Chapter 4 Hardware Setup

This chapter provides you with the information about hardware setup procedures. While doing the installation, be careful in holding the components and follow the installation procedures. For some components, if you install in the wrong orientation, the components will not work properly.

Use a grounded wrist strap before handling computer components. Static electricity may damage the components.

Quick Components Guide

Memory

The mainboard provides one 240-pin **non-ECC DDR2 400/533** and **ECC DDR2 400** DIMM slot and supports up to 1GB system memory.

Installing DDR2 Modules

- The memory module has only one notch on the center and will only fit in the right orientation.
- Insert the memory module vertically into the DIMM slot. Then push it in until the golden finger on the memory module is deeply inserted in the DIMM slot.

3. The plastic clip at each side of the DIMM slot will automatically close.

Power Supply

ATX 20-Pin System Power Connector: ATX1

This connector allows you to connect to an ATX power supply. To connect to the ATX power supply, make sure the plug of the power supply is inserted in the proper orientation and the pins are aligned. Then push down the power supply firmly into the connector.

ATX1 11 1

ATX1 Pin Definition

PI	N	SIGNAL	PIN	SIGNAL
1		3.3V	11	3.3V
2		3.3V	12	-12V
3		GND	13	GND
4		5V	14	PS_ON
5		GND	15	GND
6		5V	16	GND
7		GND	17	GND
8		PW_OK	18	-5V
9		5V_SB	19	5V
10		12V	20	5V

Quick Components Guide

LAN (RJ-45) Jacks

The standard RJ-45 jacks are for connection Activity Indicator to Local Area Network (LAN). You can connect network cables to them. Link Indicator

		Left LED	Right LED	
		Active LED	100M/1000M Speed LED	
LED Color		Yellow	Green/Orange	
10M Cable Plug-in	No Transmission	OFF	OFF	
	Transition	Yellow(Blinking)	OFF	
100M Cable Plug-in	No Transmission	OFF	Green(Lighting)	
	Transition	Yellow(Blinking)	Green(Lighting)	
1000M Cable Plug-in	No Transmission	OFF	Orange(Lighting)	
	Transition	Yellow(Blinking)	Orange(Lighting)	
In S3/S4/S5 Standby State		OFF	OFF	

Connectors

IDE Connector: IDEB1

The mainboard has a 32-bit Enhanced PCI IDE and Ultra DMA 33/66/100/133 controller that provides PIO mode 0~4, Bus Master, and Ultra DMA 33/66/100/133 function. You can connect hard disk drives, CD-ROM and other IDE devices.

The Ultra ATA133 interface boosts data transfer rates between the computer and the hard drive up to 133 megabytes (MB) per second.

CompactFlash Card Slot: CF1

This CompactFlash slot shares one channel of the IDE controller. You can install one CompactFlash type I / type II device.

- * The CF1 slot and the IDEB1 connector shares and uses the same channel. CF1 and IDEB1 can support up to 2 IDE devices without CF device or 1 IDE device with 1 CF device.
- * If you install two IDE devices, you must configure the second drive to Slave mode by setting its jumper. Refer to the hard disk documentation supplied by hard disk vendors for jumper setting instructions.
- * If you install one IDE device with ATA133 IDE cable and one CF device, you must configure the CF drive to Master mode by setting jumper JCF_SEL1. CF only supports Master mode by using the ATA133 IDE cable.
- * CF only supports Slave mode by using ATA33 IDE cable.

Serial ATA Connectors: SATA1, SATA2

SATA1~SATA2 are high-speed SATA interface ports and support SATA data rates of 300MB/s. Each SATA connector can connect to 1 hard disk device and is fully compliant with Serial ATA 2.0 specifications.

Please do not fold the Serial ATA cable into 90-degree angle. Otherwise, data loss may occur during transmission.

Hardware Setup

Audio Amplifier Connector: JAUD1

The 6W JAUD1 is used to connect audio amplifiers to enhance audio performance.

	Pin Definition			
JAUD1	PIN	SIGNAL		
10000	1	AMP_R+		
	2	AMP_R-		
	3	AMP_L+		
	4	AMP_L-		

Front Audio Connector: JAUD2

This connector is designed to connect an optional audio bracket that provides extra front panel audio IO jacks.

PIN	SIGNAL	PIN	SIGNAL
1	5V_SB	2	VCC3
3	SPDF_OUT	4	NA
5	GND	6	SPDF_IN
7	LEF_OUT	8	SURR_OUT_R
9	CEN_OUT	10	SURR_OUT_L
11	JAUD_DET	12	AUDIO GND
13	SIDE_SURR_L	14	SIDE_SURR_R

Front Panel Connector: JFP1

The mainboard provides one front panel connector for electrical connection to the front panel switches and LEDs. The JFP1 is compliant with Intel® Front Panel I/O Connectivity Design Guide.

JFP1 Pin Definition

Reset Circuit

External circuit

HDD LED Circuit

Digital IO Connector: J6

The J6 connects to the General-Purpose Input/Output (GPIO) peripheral module.

Parallel Port Header: JLPT1

The mainboard provides a 26-pin header for connection to an optional parallel port bracket. The parallel port is a standard printer port that supports Enhanced Parallel Port (EPP) and Extended Capabilities Parallel Port (ECP) mode.

					J	L	Ρ	Т	1					
2	0	0	0	0	0	0	0	0	0	0	0	0	•/	26 25

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	RSTB#	2	AFD#	15	PRND6	16	GND
3	PRND0	4	ERR#	17	PRND7	18	GND
5	PRND1	6	PINIT#	19	ACK#	20	GND
7	PRND2	8	LPT_SLIN#	21	BUSY	22	GND
9	PRND3	10	GND	23	PE	24	GND
11	PRND4	12	GND	25	SLCT	26	GND
13	PRND5	14	GND				

Fan Power Connectors: CPUFAN1, SYSFAN1

The fan power connectors support system cooling fan with +12V. When connecting the wire to the connectors, always take note that the red wire is the positive and should be connected to the +12V, the black wire is Ground and should be connected to GND. If the mainboard has a System Hardware Monitor chipset on-board, you must use a specially designed fan with speed sensor to take advantage of the CPU fan control.

Serial Port Connector: COM3, COM4

The mainboard provides two 9-pin headers as serial ports. These ports are 16550A high speed communication port that sends/receives 16 bytes FIFOs. You can attach a serial mouse or other serial devices directly to them.

Front USB Connector: F_USB1

The mainboard provides one USB 2.0 pinheader that is compliant with Intel® I/O Connectivity Design Guide. USB 2.0 technology increases data transfer rate up to a maximum throughput of 480Mbps, which is 40 times faster than USB 1.1, and is ideal for connecting high-speed USB interface peripherals such as **USB HDD**, **digital cameras**, **MP3 players**, **printers**, **modems and the like**.

	Pin Definition					
F_USB1	PIN	SIGNAL	PIN	SIGNAL		
10 💷 9	1	VCC	2	VCC		
	3	USB0-	4	USB1-		
	5	USB0+	6	USB1+		
2 💷 1	7	GND	8	GND		
	9	Key (no pin)	10	USBOC		

Important

Note that the pins of VCC and GND must be connected correctly to avoid possible damage.

CD-In Connector: JCD1

The connector is for CD-ROM audio connector.

LVDS Flat Panel Connector: JLVDS1

The LVDS (Low Voltage Differential Signal) connector provides a digital interface

typically used with flat panels. After connecting an LVDS interfaced flat panel to the JLVDS1, be sure to check the panel datasheet and set the J1 LVDS Power Selection Jumper to a proper voltage.

Display Matrix						
	CRT	DVI	LVDS	TV OUT		
CRT	/	V	V	X		
DVI	V	/	V	V		
LVDS	V	V	/	V		
TV OUT	X	V	V	/		

V: Support X: No Support

JLVDS1																
	1													3	9	
כ					:	0	9	0	0	0.0	0	0.00	0.00	0	:	Ľ
_	2					-								۵	n	_

SIGNAL	Р	IN	SIGNAL
+12V	2	1	+12V
+12V	4	3	+12V
GND	6	5	+12V
GND	8	7	VCC3/VCC5
LCD_VDD	10	9	LCD_VDD
LDDC_DATA	12	11	LDDC_CLK
LVDS_VDDEN	14	13	L_BKLTCTL
GND	16	15	L_BKLTEN
LA_DATA0	18	17	LA_DATA0#
LA_DATA1	20	19	LA_DATA1#
LA_DATA2	22	21	LA_DATA2#
LA_CLK	24	23	LA_CLK#
LA_DATA3	26	25	LA_DATA3#
GND	28	27	GND
LB_DATA0	30	29	LB_DATA0#
LB_DATA1	32	31	LB_DATA1#
LB_DATA2	34	33	LB_DATA2#
LB_CLK	36	35	LB_CLK#
LB_DATA3	38	37	LB_DATA3#
GND	40	39	GND

Hardware Setup

TV-Out Connector: JTV1

The mainboard provides a TV-Out connector.

Display Matrix					
	CRT	DVI	LVDS	TV OUT	
CRT	/	V	V	X	
DVI	V	/	V	V	
LVDS	V	V		V	
TV OUT	X	V	V	/	
V : Support X : No Support					

JTV1

Pin	Description	Pin	Description
1	TVGND	2	LCVBS
3	LY	4	TVGND
5	LC	6	Key (no pin)

IrDA Infrared Module Header: IRDA1

The connector allows you to connect to IrDA Infrared module. You must configure the setting through the BIOS setup to use the IR function. IRDA1 is compliant with Intel® Front Panel I/O Connectivity Design Guide.

Pin Definition					
Pin Signal					
1	NC				
2	Key (no pin)				
3	VCC5				
4	GND				
5	IRTX				
6	IRRX				

I2C Bus Connector: J1

The mainboard provides one I2C (also known as I²C) Bus connector for users to connect System Management Bus (SMBus) interface.

Pin Definition

Pin	Signal
1	VCC5F
2	SMBCLK
3	GND
4	SMBDATA-

Jumpers

Display Jumper: TV/CRT1

This jumper is used to select the display type.

TV/CRT1	RT1 1 D 3 TV Out			1 CRT Out		
		Di	splay Mat	rix		
		CRT	DVI	LVDS	TV OUT	
	CRT	/	v	V	X	
	DVI	V	/	V	V	
	LVDS	V	V	/	V	
	TV OUT	Х	v	V	/	
V : Support X : No Support						

Clear CMOS Jumper: CLR_CMOS1

There is a CMOS RAM onboard that has a power supply from external battery to keep the data of system configuration. With the CMOS RAM, the system can automatically boot OS every time it is turned on. If you want to clear the system configuration, set this jumper to clear data.

LCD Power Source Jumper: J7

This jumper is used to select the power source of LCD.

COM Port Power Jumpers: J2, J3, J4, J5

These jumpers specify the operation voltage of the serial port COM1~4.

Pin Definitio	n
---------------	---

Pin	Signal
1	VCC12F
2	VCC_COM
3	VCC5F

Slots

PCI (Peripheral Component Interconnect) Slot

The PCI slot supports LAN cards, SCSI cards, USB cards, and other add-on cards that comply with PCI specifications. At 32 bits and 33 MHz, it yields a throughput rate of 133 MBps.

PCI Interrupt Request Routing

The IRQ, acronym of interrupt request line and pronounced I-R-Q, are hardware lines over which devices can send interrupt signals to the microprocessor. The PCI IRQ pins are typically connected to the PCI bus pins as follows:

	Order 1	Order 2	Order 3	Order 4
32-bit PCI1	INT A#	INT B#	INTC#	INTD#

Important

When adding or removing expansion cards, make sure that you unplug the power supply first. Meanwhile, read the documentation for the expansion card to configure any necessary hardware or software settings for the expansion card, such as jumpers, switches or BIOS configuration.

Mini PCI Slot

This is a 32 bits, 33 MHz and 133 MBps PCI slot, only select the MiniPCI adapters can be installed.

Installing Mini PCI Cards

- Insert the card at an angle of 45 degrees into the Mini PCI slot, Line up the notch in the card with the small tab in the slot and slide the card into the slot until the golden finger is almost invisible.
- 2. Push the Mini PCI card down until the two snaps on either side of the card lock into place.

Removing Mini PCI Cards

If you need to remove a card in the Mini PCI slot, spread the tabs in the slot away from the notches in the card. The card should pop up slightly. Lift the card to a 45-degree angle and then gently slide the card out of the slot.

Slots

PCI (Peripheral Component Interconnect) Slot

The PCI slot supports LAN cards, SCSI cards, USB cards, and other add-on cards that comply with PCI specifications. At 32 bits and 33 MHz, it yields a throughput rate of 133 MBps.

PCI Interrupt Request Routing

The IRQ, acronym of interrupt request line and pronounced I-R-Q, are hardware lines over which devices can send interrupt signals to the microprocessor. The PCI IRQ pins are typically connected to the PCI bus pins as follows:

	Order 1	Order 2	Order 3	Order 4
32-bit PCI1	INT A#	INT B#	INTC#	INTD#

Important

When adding or removing expansion cards, make sure that you unplug the power supply first. Meanwhile, read the documentation for the expansion card to configure any necessary hardware or software settings for the expansion card, such as jumpers, switches or BIOS configuration.

This chapter provides information on the following system resources:

- 1. Watch Dog Timer Setting (p.6-2);
- 2. Award POST Code (p.6-4);
- 3. Check Point & Beep Code List (p.6-10);
- 4. PCI Configuration (p.6-17);
- 5. Resource List (p.6-18).

Watch Dog Timer Setting

Logical Device 7 (Game Port and GPIO Port 1)

CRF3 (PLED mode register. Default 0x00)

Bit [7:3] : Reserved .

Bit 2: select WDTO count mode.

- 0 second
- 1 minute
- Bit [1:0]: select PLED mode
 - 00 Power LED pin is tri-stated.
 - 01 Power LED pin is droved low.
 - 10 Power LED pin is a 1Hz toggle pulse with 50 duty cycle.
 - 11 Power LED pin is a 1/4Hz toggle pulse with 50 duty cycle.

CRF4 (Default 0x00)

Watch Dog Timer Time-out value. Writing a non-zero value to this register causes the counter to load the value to Watch Dog Counter and start counting down. Reading this register returns current value in Watch Dog Counter instead of Watch Dog Timer Time-out value.

Bit [7:0]: = 0x00 Time-out Disable

- = 0x01 Time-out occurs after 1 second/minute
- = 0x02 Time-out occurs after 2 second/minutes
- = 0x03 Time-out occurs after 3 second/minutes

.....

= 0xFF Time-out occurs after 255 second/minutes

CRF5 (Default 0x00)

- Bit [7]: Reserved .
- Bit [6] : invert Watch Dog Timer Status
- Bit 5: Force Watch Dog Timer Time-out, Write only*
 - 1 Force Watch Dog Timer time-out event; this bit is self-clearing.
- Bit 4: Watch Dog Timer Status, R/W
 - 1 Watch Dog Timer time-out occurred.
 - 0 Watch Dog Timer counting
- Bit [3:0]: These bits select IRQ resource for Watch Dog. Setting of 2 selects S MI.

Software code SIO IDX equ 4EH SIO DTA equ 4FH Timer equ 10 ;reset after 10 seconds Enter configuration mode 1. mov dx,SIO_IDX mov al,87h out dx,al out dx,al 2 Set Pin118 to WDTO# mov dx,SIO IDX mov al.2Bh out dx,al mov dx,SIO_DTA in al.dx and al,not 04h out dx.al 3. Set to and active LDN 08 mov dx,SIO_IDX mov al,07h out dx,al mov dx,SIO_DTA mov al,08h out dx,al mov dx,SIO IDX mov al,30h out dx.al mov dx,SIO_DTA in al.dx or al,01h out dx,al 4. Set WatchDog Timer mov dx,SIO IDX mov al.0f4h out dx.al mov dx.SIO DTA mov al, Timer out dx,al 5. Exit configuration mode mov dx,SIO IDX mov al,0AAh out dx.al

Award POST Code

Award BIOS Error Message and Check Point (POST code) List (Need to be modified, TBD)

#	Short Name	Description	Possible FRUS
1	CMOS checksum error - Defaults loaded	Checksum of CMOS is incorrect, so the system loads the default equipment configuration. A checksum error may indicate that CMOS has become corrupt. This error may have been caused by a weak battery. Check the battery and replace if necessary.	System board
2	CPU at nnnn	Displays the running speed of the CPU.	processor
3	Press ESC to skip memory test	The user may press Esc to skip the full memory test.	System board
4	Floppy disk(s) fail	Cannot find or initialize the floppy drive controller or the drive. Make sure the controller is installed correctly. If no floppy drives are installed, be sure the Diskette Drive selection in Setup is set to NONE or AUTO.	system board
5	HARD DISK initializing Please wait a moment	Some hard drives require extra time to initialize.	System board
6	HARD DISK INSTALL FAILURE	Cannot find or initialize the hard drive controller or the drive. Make sure the controller is installed correctly. If no hard drives are installed, be sure the Hard Drive selection in Setup is set to NONE.	System board
7	Keyboard error or no keyboard present	Cannot initialize the keyboard. Make sure the keyboard is attached correctly and no keys are pressed during POST. To purposely configure the system without a keyboard, set the error halt condition in Setup to HALT ON ALL, BUT KEYBOARD. The BIOS then ignores the missing keyboard during POST.	System board
8	Memory Test:	This message displays during a full memory test, counting down the memory areas being tested	DIMM System board

· Error/Process Message

Check Point List

POST (hex)	Description
CFh	Test CMOS R/W functionality.
C0h	Early chipset initialization:
	-Disable shadow RAM
	 Disable L2 cache (socket 7 or below)
	-Program basic chipset registers
C1h	Detect memory
	 Auto-detection of DRAM size, type and ECC.
	 Auto-detection of L2 cache (socket 7 or below)
A1h	Set Initial Conditions (Default Values) in EBP
A2h	Determine FSB frequency.
A3h	Begin Detection of installed DIMMS
A4h	Check for Column Latency
A5h	200Mhz or 266Mhz
A6h	Check for tRAS timing
A7h	Check for tRP timing
A8h	Check for tRCD timing
A9h	Check for ECC Support
AAh	Check for refresh timing
ABh	Verify that the DIMM's are in matched pairs
C3h	Expand compressed BIOS code to DRAM
C5h	Call chipset hook to copy BIOS back to E000 & F000 shadow
	RAM.
01h	Expand the Xgroup codes locating in physical address 1000:0
02h	Reserved
03h	Initial Superio_Early_Init switch.
04h	Reserved
05h	1. Blank out screen
	2. Clear CMOS error flag
06h	Reserved
07h	1. Clear 8042 interface
	2. Initialize 8042 self-test
08h	 Test special keyboard controller for Winbond 977 series Super
	I/O chips.
	Enable keyboard interface.
09h	Reserved
0Ah	 Disable PS/2 mouse interface (optional).
	Auto detect ports for keyboard & mouse followed by a port & interface swap
	(optional).
	Reset keyboard for Winbond 977 series Super I/O chips.
0Bh	Reserved
0Ch	Reserved
0Dh	Reserved
0Eh	Test F000h segment shadow to see whether it is R/W-able or not. If
	test fails, keep beeping the speaker.
0Fh	Reserved

10h	Auto detect flash type to load appropriate flash R/W codes into the
	run time area in F000 for ESCD & DMI support.
11h	Reserved
12h	Use walking 1's algorithm to check out interface in CMOS
	circuitry. Also set real-time clock power status, and then check for
	override.
13h	Reserved
14h	Program chipset default values into chipset. Chipset default
	values are MODBINable by OEM customers.
15h	Reserved
16h	Initial Early_Init_Onboard_Generator switch.
17h	Reserved
18h	Detect CPU information including brand, SMI type (Cyrix or
	Intel) and CPU level (586 or 686).
19h	Reserved
1Ah	Reserved
1Bh	Initial interrupts vector table. If no special specified, all H/W
	interrupts are directed to SPURIOUS_INT_HDLR & S/W
	Interrupts to SPURIOUS_soft_HDLR.
1Ch	Reserved
1Dh	INITIAL EARLY_PM_INITISWITCH.
1En	Reserved
1Fn	Load keyboard matrix (notebook platform)
20n	Reserved
2111	Received
2211 22h	1. Check validity of BTC values
2311	 Check value of EAb is an invalid value for DTC minute.
	2. Load CMOS settings into PIOS stack. If CMOS shocksum fails use default
	z. Edad GWOS settings into BIOS stack. If GWOS cirecksum fails, use default value instead
	 Prepare BIOS resource map for PCI & PnP use. If ESCD is valid, take into
	consideration of the ESCD's legacy information.
	4. Onboard clock generator initialization. Disable respective clock resource to
	empty PCI & DIMM slots.
	5. Early PCI initialization:
	-Enumerate PCI bus number
	-Assign memory & I/O resource
	-Search for a valid VGA device & VGA BIOS, and put it
	into C000:0.
24h	Reserved
25h	Reserved
26h	Reserved
27h	Initialize INT 09 buffer
28h	Reserved
29h	 Program CPU internal MTRR (P6 & PII) for 0-640K memory address.
	Initialize the APIC for Pentium class CPU.
	Program early chipset according to CMOS setup. Example: onboard IDE
	controller.
	4. Measure CPU speed.
	5. Invoke video BIOS.

2Ah	Reserved
2Bh	Reserved
2Ch	Reserved
2Dh	1. Initialize multi-language
	2. Put information on screen display, including Award title, CPU type, CPU speed
2Eh	Reserved
2Fh	Reserved
30h	Reserved
31h	Reserved
32h	Reserved
33h	Reset keyboard except Winbond 977 series Super I/O chips.
34h	Reserved
35h	Reserved
36h	Reserved
37h	Reserved
38h	Reserved
39h	Reserved
3Ah	Reserved
3Bh	Reserved
3Ch	Test 8254
3Dh	Reserved
3Eh	Test 8259 interrupt mask bits for channel 1.
3Fh	Reserved
40h	Test 8259 interrupt mask bits for channel 2.
41h	Reserved
42h	Reserved
43h	Test 8259 functionality.
44h	Reserved
45h	Reserved
46h	Reserved
47h	Initialize EISA slot
48h	Reserved
49h	1. Calculate total memory by testing the last double word of each 64K page.
	2. Program write allocation for AMD K5 CPU.
4Ah	Reserved
4Bh	Reserved
4Ch	Reserved
4Dh	Reserved
4Eh	1. Program MTRR of M1 CPU
	2. Initialize L2 cache for P6 class CPU & program CPU with proper cacheable
	range.
	3. Initialize the APIC for P6 class CPU.
	4. On MP platform, adjust the cacheable range to smaller one in case the
	cacheable ranges between each CPU are not identical.
4Fh	Reserved

50h	Initialize USB
51h	Reserved
52h	Test all memory (clear all extended memory to 0)
53h	Reserved
54h	Reserved
55h	Display number of processors (multi-processor platform)
56h	Reserved
57h	1. Display PnP logo
	2. Early ISA PnP initialization
	-Assign CSN to every ISA PnP device.
58h	Reserved
59h	Initialize the combined Trend Anti-Virus code.
5Ah	Reserved
5Bh	(Optional Feature)
	Show message for entering AWDFLASH.EXE from FDD (optional)
5Ch	Reserved
5Dh	 Initialize Init_Onboard_Super_IO switch.
	Initialize Init_Onbaord_AUDIO switch.
5Eh	Reserved
5Fh	Reserved
60h	Okay to enter Setup utility; i.e. not until this POST stage can users
	enter the CMOS setup utility.
61h	Reserved
62h	Reserved
63h	Reserved
64h	Reserved
65h	Initialize PS/2 Mouse
66h	Reserved
67h	Prepare memory size information for function call:
	INT 15h ax=E820h
68h	Reserved
69h	Turn on L2 cache
6Ah	Reserved
6Bh	Program chipset registers according to items described in Setup &
	Auto-configuration table.
6Ch	Reserved
6Dh	 Assign resources to all ISA PnP devices.
	Auto assign ports to onboard COM ports if the corresponding item in Setup
	is set to "AUTO".
6Eh	Reserved
6Fh	1. Initialize floppy controller
	Set up floppy related fields in 40:hardware.
70h	Reserved
71h	Reserved
72h	Reserved
73h	(Optional Feature)
	Enter AWDFLASH.EXE if :
	-AWDFLASH is found in floppy drive.
	-ALI+F2 is pressed
/4n	Reserved
/5N	Detect & Install all IDE devices: HDD, LS120, ZIP, CDROM

76h	Reserved
77h	Detect serial ports & parallel ports.
78h	Reserved
79h	Reserved
7Ah	Detect & install co-processor
7Bh	Reserved
7Ch	Reserved
7Dh	Reserved
7Eh	Reserved
7Eh	 Switch back to text mode if full screen logo is supported
	-If errors occur report errors & wait for keys
	-If no errors occur or E1 key is pressed to continue:
	wClear EPA or customization logo.
80h	Reserved
81h	Reserved
82h	1 Call chinset nower management book
	 Recover the text fond used by EPA logo (not for full screen logo)
	3. If password is set ask for password
83h	Save all data in stack back to CMOS
84h	Initialize ISA PnP boot devices
95h	1 LISP final Initialization
0.011	2 NET PC: Build SYSID structure
	3. Switch screen back to text mode
	4. Set up ACPI table at top of memory
	5. Invoke ISA adapter ROMs
	6 Assign IROs to PCI devices
	7 Initialize APM
	8. Clear poise of IROs
86h	Received
87h	Reserved
88h	Reserved
89h	Reserved
90h	Received
91h	Reserved
02h	Beenved
92h	Read HDD boot soctor information for Trand Anti Virus code
93H	1. Eachiel 2. apple
9411	2. Program best up speed
	2. Program boot up speed
	Chipset Intal Intualization Dever management final initialization
	Fower management mila milanization Clear ecroop & display summary table
	6. Drogram K6 write allocation
	7. Program D6 class write combining
055	Program doulight coving
3011	2 Undate keyboard LED & typematic rate
0.6h	1 Duild MD table
5011	2 Build & undate ESCD
	2. Set CMOS contuncto 20h or 10h
	4. Load CMOS time into DOS timer tick
	5. Duild MSIDO routing table
	5. Build Works routing table.
FFII	Doot attempt (INT 190)

Check Point & Beep Code List

Bootblock Initialization Code Checkpoints

Checkpoint	Description
Before D0	If boot block debugger is enabled, CPU cache-as-RAM functionality is enabled at this
	point. Stack will be enabled from this point.
D0	Early Boot Strap Processor (BSP) initialization like microcode update, frequency and
	other CPU critical initialization. Early chipset initialization is done.
D1	Early super I/O initialization is done including RTC and keyboard controller. Serial port
	is enabled at this point if needed for debugging. NMI is disabled. Perform keyboard
	controller BAT test. Save power-on CPUID value in scratch CMOS. Go to flat mode with
	4GB limit and GA20 enabled.
D2	Verify the boot block checksum. System will hang here if checksum is bad.
D3	Disable CACHE before memory detection. Execute full memory sizing module. If
	memory sizing module not executed, start memory refresh and do memory sizing in
	Boot block code. Do additional chipset initialization. Re-enable CACHE. Verify that flat
	mode is enabled.
D4	Test base 512KB memory. Adjust policies and cache first 8MB. Set stack.
D5	Bootblock code is copied from ROM to lower system memory and control is given to it.
	BIOS now executes out of RAM. Copies compressed boot block code to memory in
	right segments. Copies BIOS from ROM to RAM for faster access. Performs main BIOS
	checksum and updates recovery status accordingly.
D6	Both key sequence and OEM specific method is checked to determine if BIOS recovery
	is forced. If BIOS recovery is necessary, control flows to checkpoint E0. See Bootblock
	Recovery Code Checkpoints section of document for more information.
D7	Restore CPUID value back into register. The Bootblock-Runtime interface module is
	moved to system memory and control is given to it. Determine whether to execute serial
	flash.
D8	The Runtime module is uncompressed into memory. CPUID information is stored in
	memory.
D9	Store the Uncompressed pointer for future use in PMM. Copying Main BIOS into
	memory. Leaves all RAM below 1MB Read-Write including E000 and F000 shadow
	areas but closing SMRAM.
DA	Restore CPUID value back into register. Give control to BIOS POST
	(ExecutePOSTKernel). See POST Code Checkpoints section of document for more
	information.
DC	System is waking from ACPI S3 state
E1-E8	OEM memory detection/configuration error. This range is reserved for chipset vendors
EC-EE	& system manufacturers. The error associated with this value may be different from one
	platform to the next.

Bootblock Recovery Code Checkpoints

Checkpoint	Description
E0	Initialize the floppy controller in the super I/O. Some interrupt vectors are initialized.
	DMA controller is initialized. 8259 interrupt controller is initialized. L1 cache is
	enabled.
E9	Set up floppy controller and data. Attempt to read from floppy.
EA	Enable ATAPI hardware. Attempt to read from ARMD and ATAPI CDROM.
EB	Disable ATAPI hardware. Jump back to checkpoint E9.
EF	Read error occurred on media. Jump back to checkpoint EB.
FO	Search for pre-defined recovery file name in root directory.
F1	Recovery file not found.
F2	Start reading FAT table and analyze FAT to find the clusters occupied by the recovery
	file.
F3	Start reading the recovery file cluster by cluster.
F5	Disable L1 cache.
FA	Check the validity of the recovery file configuration to the current configuration of the
FA	Check the validity of the recovery file configuration to the current configuration of the flash part.
FA FB	Check the validity of the recovery file contiguration to the current contiguration of the flash part. Make flash write enabled through chipset and OEM specific method. Detect proper
FA FB	Check the validity of the recovery file configuration to the current configuration of the flash part. Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verfy that the found flash part size equals the recovery file size.
FA FB F4	Check the validity of the recovery file configuration to the current configuration of the flash part. Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verfy that the found flash part size equals the recovery file size. The recovery file size does not equal the found flash part size.
FA FB F4 FC	Check the validity of the recovery file configuration to the current configuration of the flash part. Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verfy that the found flash part size equals the recovery file size. The recovery file size does not equal the found flash part size. Erase the flash part.
FA FB F4 FC FD	Check the validity of the recovery file configuration to the current configuration of the flash part. Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verfy that the found flash part size equals the recovery file size. The recovery file size does not equal the found flash part size. Erase the flash part. Program the flash part.
FA FB FC FD FF	Check the validity of the recovery file configuration to the current configuration of the flash part. Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verfy that the found flash part size equals the recovery file size. The recovery file size does not equal the found flash part size. Erase the flash part. Program the flash part. The flash has been updated successfully. Make flash write disabled. Disable ATAPI
FA FB F4 FC FD FF	Check the validity of the recovery file configuration to the current configuration of the fash part. Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verify that the found flash part size equals the recovery file size. The recovery file size does not equal the found flash part size. Erase the flash part. Program the flash part. The flash has been updated successfully. Make flash write disabled. Disable ATAPI hardware. Restore CPUID value back into register. Give control to F000 ROM at

POST Code Checkpoints

Checkpoint	Description
03	Disable NMI, Parity, video for EGA, and DMA controllers. Initialize BIOS, POST,
	Runtime data area. Also initialize BIOS modules on POST entry and GPNV area.
	Initialized CMOS as mentioned in the Kernel Variable "wCMOSFlags."
04	Check CMOS diagnostic byte to determine if battery power is OK and CMOS checksum
	is OK. Verify CMOS checksum manually by reading storage area. If the CMOS
	checksum is bad, update CMOS with power-on default values and clear passwords.
	Initialize status register A.
	Initializes data variables that are based on CMOS setup questions. Initializes both the
	8259 compatible PICs in the system
05	Initializes the interrupt controlling hardware (generally PIC) and interrupt vector table.
06	Do R/W test to CH-2 count reg. Initialize CH-0 as system timer. Install the POSTINT1Ch
	handler. Enable IRQ-0 in PIC for system timer interrupt. Traps INT1Ch vector to
	"POSTINT1ChHandlerBlock."
07	Fixes CPU POST interface calling pointer.
08	Initializes the CPU. The BAT test is being done on KBC. Program the keyboard
	controller command byte is being done after Auto detection of KB/MS using AMI KB-5.
C0	Early CPU Init Start Disable Cache Init Local APIC
C1	Set up boot strap processor Information
C2	Set up boot strap processor for POST
C5	Enumerate and set up application processors
C6	Re-enable cache for boot strap processor
C7	Early CPU Init Exit
0A	Initializes the 8042 compatible Key Board Controller.
0B	Detects the presence of PS/2 mouse.
0C	Detects the presence of Keyboard in KBC port.
0E	Testing and initialization of different Input Devices. Also, update the Kernel Variables.
	Traps the INT09h vector, so that the POST INT09h handler gets control for IRQ1.
	Uncompress all available language, BIOS logo, and Silent logo modules.
13	Early POST initialization of chipset registers.
20	Relocate System Management Interrupt vector for all CPU in the system.
24	Uncompress and initialize any platform specific BIOS modules. GPNV is initialized at
	this checkpoint.

2A	Initializes different devices through DIM.
	See DIM Code Checkpoints section of document for more information.
2C	Initializes different devices. Detects and initializes the video adapter installed in the
	system that has optional ROMs.
2E	Initializes all the output devices.
31	Allocate memory for ADM module and uncompress it. Give control to ADM module for
	initialization. Initialize language and font modules for ADM. Activate ADM module.
33	Initializes the silent boot module. Set the window for displaying text information.
37	Displaying sign-on message, CPU information, setup key message, and any OEM
	specific information.
38	Initializes different devices through DIM. See DIM Code Checkpoints section of
	document for more information. USB controllers are initialized at this point.
39	Initializes DMAC-1 & DMAC-2.
3A	Initialize RTC date/time.
3B	Test for total memory installed in the system. Also, Check for DEL or ESC keys to limit
	memory test. Display total memory in the system.
3C	Mid POST initialization of chipset registers.
3C 40	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.)
3C 40	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc.
3C 40 52	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for
3C 40 52	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any
3C 40 52	Mid POST initialization of chipset registers. Detect different devices (Paralel ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memoryProgramming the memory biol or any kind of implementation that needs an adjustment in system RAM size if needed.
3C 40 52 60	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate.
3C 40 52 60 75	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory tesl. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initialize Int-13 and prepare for IPL detection.
3C 40 52 60 75 78	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes IPL devices controlled by BIOS and option ROMs.
3C 40 52 60 75 78 7C	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes IPL devices controlled by BIOS and option ROMs. Generate and write contents of ESCD in NVRam.
3C 40 52 60 75 78 7C 84	Mid POST initialization of chipset registers. Detect different devices (Paralel ports, srial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes Int-13 and prepare for IPL detection. Initializes IPL devices controlled by BIOS and option ROMs. Generate and write contents of ESCD in NVRam. Log errors encountered during POST.
3C 40 52 60 75 78 7C 84 85	Mid POST initialization of chipset registers. Detect different devices (Paralel ports, srial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory tast and in of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes IPL devices controlled by BIOS and option ROMs. Generate and write contents of ESCD in NVRam. Log errors encountered during POST. Display errors to the user and gets the user response for error.
3C 40 52 60 75 78 7C 84 85 87	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, srial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory bale or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes IPL devices controlled by BIOS and option ROMs. Generate and write contents of ESCD in NVRam. Log errors encountered during POST. Display errors to the user and gets the user response for error. Execute BIOS setup if needed / requested. Check boot password if installed.
3C 40 52 60 75 78 7C 84 85 87 8C	Mid POST initialization of chipset registers. Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes IPL devices controlled by BIOS and option ROMs. Generate and write contents of ESCD in NVRam. Log errors encountered during POST. Display errors to the user and gets the user response for error. Execute BIOS setup If needed / requested. Check boot password if installed. Late POST initialization of chipset registers.
3C 40 52 52 60 75 78 78 72 84 85 85 87 82 80	Mid POST initialization of chipset registers. Detectififerent devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc. Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory. Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed. Initializes NUM-LOCK status and programs the KBD typematic rate. Initializes IPL devices controlled by BIOS and option ROMs. Generate and write contents of ESCD in NVRam. Log errors encountered during POST. Display errors to the user and gets the user response for error. Execute BIOS setup if needed / requested. Check boot password if installed. Late POST initialization of chipset registers. Build ACPI tables (if ACPI is supported)

90	Initialization of system management interrupts by invoking all handlers. Please note this			
	checkpoint comes right after checkpoint 20h			
A1	Clean-up work needed before booting to OS.			
A2	Takes care of runtime image preparation for different BIOS modules. Fill the free area in			
	F000h segment with 0FFh. Initializes the Microsoft IRQ Routing Table. Prepares the			
	runtime language module. Disables the system configuration display if needed.			
A4	Initialize runtime language module. Display boot option popup menu.			
A7	Displays the system configuration screen if enabled. Initialize the CPU's before boot,			
	which includes the programming of the MTRR's.			
A9	Wait for user input at config display if needed.			
AA	Uninstall POST INT1Ch vector and INT09h vector.			
AB	Prepare BBS for Int 19 boot. Init MP tables.			
AC	End of POST initialization of chipset registers. De-initializes the ADM module.			
B1	Save system context for ACPI. Prepare CPU for OS boot including final MTRR values.			
00	Passes control to OS Loader (typically INT19h).			

System Resources

Beep Codes

Boot Block Beep Codes

Number of Beeps	Description
1 Insert diskette in floppy drive A:	
2	'AMIBOOT.ROM' file not found in root directory of diskette in A:
3	Base Memory error
4	Flash Programming successful
5	Floppy read error
6	Keyboard controller BAT command failed
7	No Flash EPROM detected
8	Floppy controller failure
9	Boot Block BIOS checksum error
10	Flash Erase error
11	Flash Program error
12	'AMIBOOT.ROM' file size error
13	BIOS ROM image mismatch (file layout does not match image present in flash
	device)

POST BIOS Beep Codes

Number of Beeps	Description
1	Memory refresh timer error.
2	Parity error in base memory (first 64KB block)
3	Base memory read/write test error
4	Motherboard timer not operational
5	Processor error
6	8042 Gate A20 test error (cannot switch to protected mode)
7	General exception error (processor exception interrupt error)
8	Display memory error (system video adapter)
9	AMIBIOS ROM checksum error
10	CMOS shutdown register read/write error
11	Cache memory test failed

Troubleshooting POST BIOS Beep Codes

Number of Beeps	Troubleshooting Action
1, 2 or 3	Reseat the memory, or replace with known good modules.
4-7, 9-11	Fatal error indicating a serious problem with the system. Consult your system
	manufacturer. Before declaring the motherboard beyond all hope, eliminate the
	possibility of interference by a malfunctioning add-in card. Remove all expansion
	cards except the video adapter.
	\cdot If beep codes are generated when all other expansion cards are absent, consult
	your system manufacturer's technical support.
	\cdot If beep codes are not generated when all other expansion cards are absent, one
	of the add-in cards is causing the malfunction. Insert the cards back into the
	system one at a time until the problem happens again. This will reveal the
	malfunctioning card.
8	If the system video adapter is an add-in card, replace or reseat the video adapter.
	If the video adapter is an integrated part of the system board, the board may be
	faulty.

PCI Configuration

PCI Interrupt Request Routing

The IRQ, acronym of interrupt request line and pronounced I-R-Q, are hardware lines over which devices can send interrupt signals to the microprocessor. The PCI IRQ pins are typically connected to the PCI bus pins as follows:

DEVICE	MCP1 INT Pin	IDSEL	CLOCK	REQ#/GNT#
PCI Slot	PIRQA	AD17	PCICLK 0	REQ#0 / GNT#0
Mini PCI Slot	PIRQB	AD18	PCICLK 1	REQ#1 / GNT#1
LAN1	PIRQC	AD21	CLKLAN 1	REQ#2 / GNT#2
LAN2	PIRQD	AD22	CLKLAN 2	REQ#3 / GNT#3

Resource List

I/O Map

I/O Port	Description
0000-000F	DMA Controller 1
0020-0021	Interrupt Controller 1
0040-0043	System Timer
004E-004F	SIO Port
0060,0064	Keyboard Controller
0070-0073	RTC and CMOS
0080-0090	DMA Controller Page Registers
0092	Port 92h
00A0-00A1	Interrupt Controller 2
00B2-00B3	APM register
00C0-00DF	DMA Controller 2
00F0-00FF	Numeric Data Processor
0170-0177	Secondary IDE Controller
01F0-01F7	Primary IDE Controller
02E8-02EF	COM4
02F8-02FF	COM2
0376	Secondary IDE Controller
0378-037F	LPT1
03E8-03EF	COM3
03F6	Primary IDE Controller
03F8-03FF	COM1
0400-045F	ACPI I/O space
0500-050F	SMBus I/O Space
0CF8-0CFF	PCI configuration Port

PCI Devices

Devices		Dev	Fun	ADSel	Ints
Host and AGP control		0	0	Internal	
Error Reporting	0	0	1	Internal	
Host Bus Control	0	0	2	Internal	
Dram Control	0	0	3	Internal	
Power Management Control	0	0	4	Internal	
North-South Module Interface Control	0	0	7	Internal	
PCI to PCI Bridge	0	1	0	Internal	
SATA and EIDE controller	0	15	0	Internal	
USB 1.1 UHCI Controllers	0	16	0~2	Internal	
USB 2.0 EHCI Controller	0	16	4	Internal	
Bus and Power Management Control	0	17	0	Internal	
South-North Module Interface Control	0	17	7	Internal	
PCI to PCIE Bridge	0	19	0	Internal	
PCI to PCI Bridge	0	19	1	Internal	
VIA VGA Controller	1	0	0	Internal	
Realtek Ethernet Controller	2	5	0	AD21	INT C
Realtek Ethernet Controller	2	6	0	AD22	INT D
VIA HDA Controller	128	0	0	Internal	
PCI Slot	2	1	0	AD17	INT A
Mini PCI Socket	2	2	0	AD18	INT B

SMBus Resource Allocation

Device	Address	Description
ICS952906	1101 001X	Clock Generator
MS-7	0101 111X	ACPI Controller
W83786NG	0101 110X	H/W Monitor
DIMM Slot	1010 0000	SPD

ISA Interrupt Allocation

IRQ	Description
IRQ0	System Timer
IRQ1	Keyboard Controller
IRQ2	Cascade Interrupt
IRQ3	COM2
IRQ4	COM1
IRQ5	COM3
IRQ6	COM4
IRQ7	LPT1
IRQ8	RTC
IRQ9	ACPI Controller Interrupt
IRQ10	PCI Device
IRQ11	PCI Device
IRQ12	PS/2 Mouse
IRQ13	Numeric Data Processor
IRQ14	Primary IDE Controller
IRQ15	Secondary IDE Controller

ISA DMA Channel Allocation

DMA Channel	Description
Channel 0	Unassigned 8-bit channel
Channel 1	Unassigned 8-bit channel
Channel 2	Unassigned 8-bit channel
Channel 3	Unassigned 8-bit channel
Channel 4	Cascade channel
Channel 5	Unassigned 16-bit channel
Channel 6	Unassigned 16-bit channel
Channel 7	Unassigned 16-bit channel

Any advice or comments about our products and service, or anything we can help you with please don't hesitate to contact with us. We will do our best to support your products, projects and business.

Address:	Global American, Inc. 17 Hampshire Drive Hudson, NH 03051
Telephone:	Toll Free U.S. Only (800) 833-8999 (603) 886-3900
FAX:	(603) 886-4545
Website:	http://www.globalamericaninc.com
Support:	Technical Support at Global American