LV-67H-**G** # Mini-ITX Motherboard # **User's Manual** Edition 1.0 2011/6/28 #### Copyright Copyright 2011, all rights reserved. This document is copyrighted and all rights are reserved. The information in this document is subject to change without prior notice to make improvements to the products. This document contains proprietary information and protected by copyright. No part of this document may be reproduced, copied, or translated in any form or any means without prior written permission of the manufacturer. All trademarks and/or registered trademarks contains in this document are property of their respective owners. #### **Disclaimer** The company shall not be liable for any incidental or consequential damages resulting from the performance or use of this product. The company does not issue a warranty of any kind, express or implied, including without limitation implied warranties of merchantability or fitness for a particular purpose. The company has the right to revise the manual or include changes in the specifications of the product described within it at any time without notice and without obligation to notify any person of such revision or changes. #### **Trademark** All trademarks are the property of their respective holders. Any questions please visit our website at http://www.commell.com.tw # **Packing List:** Please check the package content before you starting using the board. #### Hardware: LV-67H-G Mini-ITX Motherborad x 1 #### Cable Kit: ## **Printed Matters:** Driver CD (Including User's Manual) x 1 # **Optional Cable:** # Index | Chapter 1 <introduction></introduction> | 7 | |---------------------------------------------------------------|----| | 1.1 <product overview=""></product> | 7 | | 1.2 < Product Specification > | 8 | | 1.3 <mechanical drawing=""></mechanical> | 9 | | 1.4 <block diagram=""></block> | 10 | | Chapter 2 <hardware setup=""></hardware> | 11 | | 2.1 <connector location=""></connector> | 11 | | 2.2 <jumper &="" location="" reference=""></jumper> | 12 | | 2.3 <connector reference=""></connector> | 13 | | 2.3.1 <internal connectors=""></internal> | 13 | | 2.3.2 <external connectors=""></external> | 13 | | 2.4 <cpu and="" memory="" setup=""></cpu> | 14 | | 2.4.1 <cpu setup=""></cpu> | 14 | | 2.4.2 <memory setup=""></memory> | 15 | | 2.5 <cmos &="" atx="" setup=""></cmos> | 16 | | 2.6 <serial ata="" interface=""></serial> | 17 | | 2.7 <ethernet interface=""></ethernet> | 17 | | 2.8 <onboard display="" interface=""></onboard> | 18 | | 2.8.1 <analog display=""></analog> | 18 | | 2.8.2 < Digital Display> | 19 | | 2.8.3 <dvi interface=""></dvi> | 23 | | 2.9 <integrated audio="" interface=""></integrated> | 24 | | 2.10 <usb interface=""></usb> | 26 | | 2.11 <serial port=""></serial> | 28 | | 2.12 <pcie and="" card="" interface="" mini="" sim=""></pcie> | 31 | | 2.12.1 <sim setup=""></sim> | 32 | | 2.13 <gpio and="" interface="" smbus=""></gpio> | 34 | | 2.14 <power and="" fan="" interface="" supply=""></power> | 35 | | 2.14.1 < Power Input> | 35 | #### LV-67H-G User's Manual | 2.14.2 <power output=""></power> | 36 | |-------------------------------------------------------------|----| | 2.14.3 <fan connector=""></fan> | 37 | | 2.15 <switch and="" indicator=""></switch> | 38 | | Chapter 3 <system setup=""></system> | 39 | | 3.1 <audio configuration=""></audio> | 39 | | 3.2 < Display Properties Setting> | 40 | | Chapter 4 <bios setup=""></bios> | 42 | | Appendix A <i assignment="" o="" pin="" port=""></i> | 44 | | A.1 <serial ata="" port=""></serial> | 44 | | A.2 <irda port=""></irda> | 44 | | A.3 <vga port=""></vga> | 44 | | A.4 <lan port=""></lan> | 44 | | A.5 <lan led="" port=""></lan> | 45 | | Appendix B <flash bios=""></flash> | 46 | | B.1 <flash tool=""></flash> | 46 | | B.2 <flash bios="" procedure=""></flash> | 46 | | Appendix C <system resources=""></system> | 47 | | C.1 <i address="" map="" o="" port=""></i> | 47 | | C.2 <memory address="" map=""></memory> | 49 | | C.3 <system &="" dma="" irq="" resources=""></system> | 50 | | Appendix D <programming gpio's=""></programming> | 51 | | Appendix E <programming timer="" watchdog=""></programming> | 52 | | Contact Information | 53 | (This page is left for blank) # **Chapter 1 < Introduction>** #### 1.1 < Product Overview> **LV-67H-G** the 2nd Generation Intel of the Mini-ITX motherboard, supports 2nd Generation Intel® Core[™] i7, Core[™] i5, Core[™] i3 and Celeron® Mobile Processor and features Intel QM67 chipset, integrated HD Graphics, DDR3 memory, REALTEK High Definition Audio, Serial ATA and Intel Gigabit LAN. #### **Intel Sandy Bridge Processor** The 2nd Generation Intel® Core™ processor family mobile is the next generation of 64-bit, multi-core mobile processor built on 32- nanometer process technology. Based on a new micro-architecture. #### New features for Intel QM67 chipset The board integrates Intel QM67 chipset, supports integrated HD Graphics, built-in high speed mass storage interface of serial ATA, High Definition Audio with 2 channels surrounding sound. #### All in One multimedia solution Based on Intel QM57 chipset, the board provides high performance onboard graphics, 24-bit dual channel LVDS interface, DVI and 2 channels High Definition Audio, to meet the very requirement of the multimedia application. #### Flexible Extension Interface The board provides, two mini-PCIE socket and one PCIE X16 slot. # 1.2 < Product Specification> | General Specific | ation | | |----------------------|-----------------------------------------------------------------------------|--| | Form Factor | Mini-ITX motherboard | | | CPU | 2 nd Generation Intel® Core™ i7, Core™ i5, Core™ i3 and Celeron® | | | | Mobile Processor | | | | Package type: rPGA988B | | | Memory | 2 x DDRIII SO-DIMM 1066/1333/1600 MHz up to 16GB | | | Chipset | Intel QM67 | | | Real Time Clock | Chipset integrated RTC with onboard lithium battery | | | Watchdog Timer | Generates a system reset with internal timer for 1min/s ~255min/s | | | Power Management | Supports ACPI 3.0 compliant, | | | Serial ATA Interface | 4 x serial ATAII interface with 300MB/s transfer rate | | | | 2 x serial ATAIII interface with 600MB/s transfer rate | | | VGA Interface | Onboard DSUB15 connector for VGA interface | | | LVDS Interface | Onboard 24-bit dual channel LVDS connector with +3.3V/+5V/+12V | | | | supply | | | DVI Interface | Chrontel CH7318 Transmitter with 26-pin DVI connector | | | Audio Interface | Realtek ALC888 HD Audio | | | LAN Interface | 2 x Intel 82574L Gigabit LAN | | | GPIO interface | Onboard programmable 8-bit Digital I/O interface | | | Extended Interface | 1 x PCIE x16 slot, 2 x PCIE mini card socket,1 x SIM socket | | | Internal I/O Port | 3 x RS232,1 x SMBUS, 1 x GPIO, 6 x USB2.0 ports, 1 x IrDA, 1 x DVI, | | | | 1 x LVDS, 4 x Serial ATAII,2 x Serial ATAIII, 1 x Front panel Audio | | | | and 1 x CDIN | | | External I/O Port | 1 x PS/2, 2 x LAN ports, 1 x VGA port, 4 x USB2.0 ports, | | | | 1 x RS232/422/485, 2 x RS232, 1 x SPDIF and 1 x 2 Channel Audio | | | Power Requirement | Standard 20-Pin ATX power supply or 9~24V full range DC Input | | | Dimension | 170mm x 170mm | | | Temperature | Operating within 0~60 centigrade | | | | Storage within -20~85 centigrade | | | Ordering Code | | | | LV-67H-DXT-G | Intel PGA988B+ QM67 Onboard VGA, LVDS, DVI, LAN, USB2.0, HD | | | | Audio, SATAII, SATAIII, SMBUS, LPC, SIM, GPIO, PCIE x16and, | | | | PCI Express mini card. | | The specifications may be different as the actual production. For further product information please visit the website at http://www.commell.com.tw. # 1.3 < Mechanical Drawing> Unit: inch # 1.4 <Block Diagram> # Chapter 2 < Hardware Setup> # 2.1 <Connector Location> # 2.2 < Jumper Location & Reference> | Jumper | Function | | |--------|------------------------------------|--| | JRTC | CMOS Operating/Clear Setting | | | JVLCD | Panel Voltage Setting | | | JAT | Power mode select | | | JP1 | Com1 Voltage Setting (For Pin 9) | | | JP2 | Com2 Voltage Setting (For Pin 9) | | | JP3 | Com3 Voltage Setting (For Pin 9) | | | JP4 | Com4 Voltage Setting (For Pin 9) | | | JCSEL1 | CN_COM2 RS-232 RS422 RS485 Setting | | | JCSEL2 | CN_IR IrDA Setting | | | JVUSB | USB Voltage Setting | | # 2.3 < Connector Reference> ## 2.3.1 <Internal Connectors> | Connector | Function | Remark | |----------------------------|-------------------------------------|---------------| | CPU | Socket rPGA988B for PGA988 CPU | | | SO-DIMM 1/2 | 204 -pin DDR3 SO-DIMM socket | | | SATA 1/2 | 7-pin Serial ATAIII connector | | | SATA 3/4/5/6 | 7-pin Serial ATAII connector | | | DC_IN | DC 9~24V input connector | | | ATX | 20-pin power input connector | ATX P/S Mode | | AIX | 20-pin power output connector | DC_Input Mode | | CN_AUDIO | 5 x 2-pin audio connector | | | CD_IN | 4-pin CD-ROM audio input connector | | | CN_DIO | 6 x 2-pin digital I/O connector | | | CN_USB 3/4/5 | 5 x 2-pin USB connector | | | CPUFAN | 4-pin CPU cooler fan connector | | | SYSFAN | 3-pin system cooler fan connector | | | CN_LVDS | 20 x 2-pin LVDS connector | | | CN_INV | 5-pin LCD inverter connector | | | CN_IR | 5-pin IrDA connector | | | CN_COM 4 | 9-pin RS232 | | | CN_COM 5/6 | 19-pin 2 x RS232 | | | CN_LPC | 5 x 2-pin LPC connector | | | JFRNT | 14-pin front panel switch/indicator | | | JEKNI | connector | | | PCIE 164-pin x16 PCIE slot | | | | Mini-PCIE1/2 | 2 x 52-pin Mini-PCIE socket | | | JAT | Power mode select | | | JSPD 1/2 | 0 1/2 LAN Speed LED connector | | | JACT 1/2 | LAN Activity LED connector | | # 2.3.2 <External Connectors> | Connector | Function | Remark | |--------------|--------------------------------------------|--------| | USB_RJ45 1/2 | 2 x USB and 1 x RJ45 LAN connector | | | COM1 + CRT | COM1 Connect DB15 and analog VGA connector | | | COM 2/3 | Serial port connector | | | PS/2 | PS/2 keyboard and mouse connector | | | AUDIO | Audio connector | | | SPDIF | SPDIF digital audio output connector | | # 2.4 < CPU and Memory Setup> # 2.4.1 < CPU Setup> The board comes with the socket rPGA988 for Intel **SandyBridge** Processor, Please follow the instruction to install the CPU properly. 1. Use the flat-type screw drive to unlock the CPU socket 2. Follow the pin direction to install the processor on the socket 3. Lock the socket #### 2.4.2 < Memory Setup> The board provides 2 x 204-pin DDR3 SO-DIMM to support 1066/1333/1600MHz DDR3 memory module up to 16GB. # 2.5 < CMOS & ATX Setup> The board's data of CMOS can be setting in BIOS. If the board refuses to boot due to inappropriate CMOS settings, here is how to proceed to clear (reset) the CMOS to its default values. Jumper: JRTC Type: Onboard 3-pin jumper | JRTC | Mode | |------|------------------| | 1-2 | Clear CMOS | | 2-3 | Normal Operation | Default setting: 2-3 Jumper: JAT Type: onboard 3-pin jumper | JAT | Mode | |-----|----------| | 1-2 | AT Mode | | 2-3 | ATX Mode | Default setting:2-3 #### 2.6 <Serial ATA Interface> Based on Intel PCH, the board providestwo Serial ATAIII(SATA Port1/2) interfaces with up to 600MB/s of transfer rate and four Serial ATAII(SATA Port3/4/5/6) interfaces with up to 300MB/s of transfer rate. ### 2.7 < Ethernet Interface> The board integrates with one Intel PCI Express Gigabit Ethernet controllers, as the PCI Express x1 can speed up to 250MB/s of transfer rate instead of late PCI bus with 133MB/s of transfer rate. The Intel Gigabit Ethernet supports triple speed of 10/100/1000Base-T, with IEEE802.3 compliance and Wake-On-LAN supported. ## 2.8 <Onboard Display Interface> Based on Intel Sandy Bridge CPU with built-in HD Graphic, the board provides one DB15 connector on real external I/O port, one 40-pin LVDS interface with 5-pin LCD backlight inverter connector and provides 26-pin DVI interface. The board provides dual display function with clone mode and extended desktop mode for CRT, LCD and DVI. ## 2.8.1 < Analog Display> Please connect your CRT or LCD monitor with DB15 male connector to the onboard DB15 female connector on rear I/O port . CRT #### 2.8.2 < Digital Display> The board provides one 40-pin LVDS connector for 24-bit single/dual channel panels, supports up to 2048 x 1536 (UXGA) resolution, with one LCD backlight inverter connector and one jumper for panel voltage setting. Effective patterns of connection: 1-2/3-4/5-6 Warning: others cause damages Connector: CN INV Type: 5-pin LVDS Power Header | Pin | Description | |-----|-----------------| | 1 | +12V | | 2 | Reserved (Note) | | 3 | GND | | 4 | GND | | 5 | ENABKL | Note: Reserved for MB internal test Please treat it as NC. Connector: JVLCD Type: 6-pin Power select Header | Pin | Description | | |-----|---------------|--| | 1-2 | LCDVCC (3.3V) | | | 3-4 | LCDVCC (5V) | | | 5-6 | LCDVCC (12V) | | Default: 1-2 Connector: CN_LVDS Type: onboard 40-pin connector for LVDS connector Connector model: HIROSE DE13-40DP-1 25V | Pin Signal Pin Signal 2 LCDVCC 1 LCDVC 4 GND 3 GND 6 ATX0- 5 BTX0- 8 ATX0+ 7 BTX0+ 10 GND 9 GND 12 ATX1- 11 BTX1- 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ 22 GND 21 GND | Connector model: HIROSE DF13-40DP-1.25V | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--| | 4 GND 3 GND 6 ATX0- 5 BTX0- 8 ATX0+ 7 BTX0+ 10 GND 9 GND 12 ATX1- 11 BTX1- 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 6 ATX0- 5 BTX0- 8 ATX0+ 7 BTX0+ 10 GND 9 GND 12 ATX1- 11 BTX1- 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | C | | | | | | | 8 ATX0+ 7 BTX0+ 10 GND 9 GND 12 ATX1- 11 BTX1- 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 10 GND 9 GND 12 ATX1- 11 BTX1- 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 12 ATX1- 11 BTX1- 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 14 ATX1+ 13 BTX1+ 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 16 GND 15 GND 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 18 ATX2- 17 BTX2- 20 ATX2+ 19 BTX2+ | | | | | | | | 20 ATX2+ 19 BTX2+ | | | | | | | | | | | | | | | | 22 GND 21 GND | | | | | | | | | | | | | | | | 24 ACLK- 23 BTX3- | | | | | | | | 26 ACLK+ 25 BTX3+ | | | | | | | | 28 GND 27 GND | | | | | | | | 30 ATX3- 29 BCLK- | | | | | | | | 32 ATX3+ 31 BCLK+ | | | | | | | | 34 GND 33 GND | | | | | | | | 36 DDCPCLK 35 SMBCk | (L | | | | | | | 38 DDCPDATA 37 SMBDA | ATA | | | | | | | 40 N/C 39 SPDIF |) | | | | | | #### LV-67H-G User's Manual To setup the LCD, you need the component below: - 1. A panel with LVDS interfaces. - 2. An inverter for panel's backlight power. - 3. A LCD cable and an inverter cable. For the cables, please follow the pin assignment of the connector to make a cable, because every panel has its own pin assignment, so we do not provide a standard cable; please find a local cable manufacture to make cables. #### LCD Installation Guide: 1. Preparing the LV-67H-G, LCD panel and the backlight inverter. - 2. Please check the datasheet of the panel to see the voltage of the panel, and set the jumper **JVLCD** to +12V or +5V or +3.3V. - 3. You would need a LVDS type cable. 4. To connect all of the devices well. After setup the devices well, you need to select the LCD panel type in the BIOS. The panel type mapping is list below: | BIOS panel type selection form (BIOS Version:1.0) | | | | | |---------------------------------------------------|----------------------------------|-----------------------|---------------|--| | Single / Dual channel | | Single / Dual channel | | | | NO. | Output format | NO. | Output format | | | 1 | 640 x 480 | 9 | 1680 x 1050 | | | 2 | 800 x 600 | 10 | 1920 x 1200 | | | 3 | 1024 x 768 | 11 | 1440 x 900 | | | 4 | 1280 x 1024 | 12 | 1600 x 900 | | | 5 | 1400 x 1050 Reduced Blanking | 13 | OEM Keep | | | 6 | 1400 x 1050 non-Reduced Blanking | 14 | 1280 x 800 | | | 7 | 1680 x 1200 | 15 | 1920 x 1080 | | | 8 | 1366 x 768 | 16 | 2048 x 1536 | | # 2.8.3 < DVI Interface> Connector: CN_DVI Connector type: 26-pin header connector (pitch = 2.00mm) | Pin Number | Assignment | Pin Number | Assignment | |------------|------------|------------|------------| | 1 | TX1+ | 2 | TX1- | | 3 | Ground | 4 | Ground | | 5 | TXC+ | 6 | TXC- | | 7 | Ground | 8 | PVDD | | 9 | N/C | 10 | N/C | | 11 | TX2+ | 12 | TX2- | | 13 | Ground | 14 | Ground | | 15 | TX0+ | 16 | TX0- | | 17 | N/C | 18 | HPDET | | 19 | DDCDATA | 20 | DDCCLK | | 21 | GND | 22 | N/C | | 23 | N/C | 24 | N/C | | 25 | N/C | 26 | N/C | ## 2.9 < Integrated Audio Interface> The board integrates onboard audio interface with REALTEK ALC888 codec, with Intel next generation of audio standard as High Definition Audio, it offers more vivid sound and other advantages than former HD audio compliance. The main specifications of ALC888 are: - High-performance DACs with 100dB S/N ratio - 2 DAC channels support 16/20/24-bit PCM format for 2 audio solution - 16/20/24-bit S/PDIF-OUT supports 44.1K/48K/96kHz sample rate - Compatible with HD - Meets Microsoft WHQL/WLP 2.0 audio requirements The board provides 2 channels audio phone jacks on rear I/O port, Line-in/MIC-in ports for front I/O panel through optional cable. Connector: CN_AUDIO Type: 10-pin (2×5) header (pitch = 2.54mm) | Pin | Description | Pin | Description | |-----|-------------|-----|----------------| | 1 | MIC_L | 2 | Ground | | 3 | MIC_R | 4 | N/C | | 5 | Speaker_R | 6 | MIC Detect | | 7 | SENSE | 8 | N/C | | 9 | Speaker_L | 10 | Speaker Detect | Connector: CDIN Type: 4-pin header (pitch = 2.54mm) | Pin | Description | | |-----|-------------|--| | 1 | CD – Left | | | 2 | Ground | | | 3 | Ground | | | 4 | CD – Right | | # 2.10 < USB Interface> **LV-67H-G** integrates eight USB2.0 ports. The specifications of USB2.0 are listed below: | Interface | USB2.0 | |---------------|---------------| | Controller | Intel® ICH8-M | | Transfer Rate | Up to 480Mb/s | | Voltage | 5V | USB1/2/3/4 Connector: CN_USB4/5/6 Type: 10-pin (2×5) header (pitch = 2.54mm) | Pin | Description | Pin | Description | |-----|-----------------|-----|-----------------| | 1 | VCC (5V_SB/ 5V) | 2 | VCC (5V_SB/ 5V) | | 3 | Data0- | 4 | Data1- | | 5 | Data0+ | 6 | Data1+ | | 7 | Ground | 8 | Ground | | 9 | Ground | 10 | N/C | Connector: JVUSB Type: 6-pin Power select jumper | Pin | Description | |-----------|-------------| | 1-3 & 2-4 | 5V_SB | | 3-5 & 4-6 | 5V | Default: 1-3 & 2-4 Effective patterns of connection: 1-3 & 2-4 or 3-5 & 4-6 Warning: others cause damages #### 2.11 <Serial Port> The board supports Three RS232 serial port and one jumper selectable RS232/422/485 serial ports. The jumper JCSEL1 & JCSEL2 can let you configure the communicating modes for COM2. COM₂ Connector: COM1/3 Type: 9-pin D-sub male connector on bracket for COM1/3 | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | DCD | 2 | RXD | | 3 | TXD | 4 | DTR | | 5 | GND | 6 | DSR | | 7 | RTS | 8 | CTS | | 9 | RI | 10 | N/C | Connector: COM2 Type: 9-pin D-sub male connector on bracket for COM2 | Pin | Description | Pin | Description | |-----|-----------------|-----|-----------------| | 1 | DCD/422TX-/485- | 2 | RXD/422TX+/485+ | | 3 | TXD/422RX+ | 4 | DTR/422RX- | | 5 | GND | 6 | DSR | | 7 | RTS | 8 | CTS | | 9 | RI | 10 | N/C | ## Setting RS-232 & RS-422 & RS-485 for COM2 | Function | JCSEL2 | JCSEL1 | |----------|------------|--------------| | IrDA | 2 8
1 7 | 2 12
1 11 | | RS-422 | 2 8 | 2 12
1 11 | | RS-485 | 2 8
1 7 | 2 12
1 11 | | RS-232 | 2 8
1 7 | 2 12
1 11 | Default setting: JCSEL1: (1-3, 2-4, 7-9, 8-10) JCSEL2: (1-2) Jumper: JP1/JP2/JP3/JP4 (COM1/2/3/4) Type: onboard 6-pin header | Power Mode | JP39/JP49 | | |----------------------|-----------|--| | Pin 9 with 5V Power | 1-2 | | | Pin 9 with 12V Power | 3-4 | | | Default setting: 5-6 | | | # 2.12 < PCIE Mini Card and SIM Interface> The board provides two PCIE mini card sockets and a SIM socket. MINI_CARD1 support MPX-SDVOD /MPX-SDVOX. Default: support MPX-SDVOD MINI_CARD2 support 3G PCIE Mini card with SIM. Connector: **SIMM**Type: 6-pin SIM socket | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | SIMVCC | 2 | SIMRST | | 3 | SIMCLK | 4 | NC | | 5 | GND | 6 | SIMVPP | | 7 | SIMDATA | | | #### 2.12.1 <SIM Setup> ## Step1. SIM card holder is marked by circle. Slide the cap toward OPEN direction. ## Step 2. Make sure that the cap is now at the OPEN position. # Step 3. Flip the cap up for inserting a SIM card into. #### Step 4. Insert a SIM card as shown in the photo. Be sure that the corner cut is on top and the golden pads are up. #### Step 5. Now, flip down the cap as shown in the photo. #### Step 6. Press down and slide the cap to the CLOSE position. Be sure that the cap is tightly held with the socket. ## 2.13 < GPIO and SMBUS Interface> The board provides a programmable 8-bit digital I/O interface; you can use this general purpose I/O port for system control like POS or KIOSK. Connector: CN_DIO Type: 12-pin (6 x 2) header (pitch = 2.0mm) | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | Ground | 2 | Ground | | 3 | GP10 | 4 | GP14 | | 5 | GP11 | 6 | GP15 | | 7 | GP12 | 8 | GP16 | | 9 | GP13 | 10 | GP17 | | 11 | 5V | 12 | 12V | Connector: CN_SMBUS Type: 5-pin header for SMBUS Ports | Pin | Description | |-----|-------------| | 1 | VCC | | 2 | N/C | | 3 | SMBDATA | | 4 | SMBCLK | | 5 | Ground | # 2.14 < Power Supply and Fan Interface > #### 2.14.1 <Power Input> The board requires onboard 4-pin DC-input connector voltage range is from 9V to 24V, or onboard 20-pin ATX2.0, for the input current, please take a reference of the power consumption report on appendix. Connector: DC_IN Type: 4-pin DC power connector | Pin | Description | Pin | Description | |-----|-------------|-----|-------------| | 1 | Ground | 2 | Ground | | 3 | +9~+24V | 4 | +9~+24V | Connector: ATX (It also can become Output when DC-IN be used) Type: 20-pin ATX power connector | PIN assignment | | | | | | |----------------|-------|----|-------|--|--| | 1 | 3.3V | 13 | 3.3V | | | | 2 | 3.3V | 14 | -12V | | | | 3 | GND | 15 | GND | | | | 4 | 5V | 16 | -PSON | | | | 5 | GND | 17 | GND | | | | 6 | 5V | 18 | GND | | | | 7 | GND | 19 | GND | | | | 8 | PW_OK | 20 | N/C | | | | 9 | 5V_SB | 21 | 5V | | | | 10 | 12V | 22 | 5V | | | | 11 | 12V | 23 | 5V | | | | 12 | 3.3V | 24 | GND | | | ## 2.14.2 <Power Output> The board provides one 20-pin ATX connector for +5V/+12V output for powering your HDD, CDROM or other devices. Attention: When DC-IN had power supplied, the ATX become output! ## Avoid DC-IN and ATX power supply input at the same time! Connector: **ATX** (When DC-IN be used) Type: 20-pin ATX connector for +5V/+12V Output | PIN assignme | ent | | | |--------------|-----|----|-----| | 1 | * | 13 | * | | 2 | * | 14 | * | | 3 | * | 15 | * | | 4 | 5V | 16 | * | | 5 | GND | 17 | * | | 6 | * | 18 | GND | | 7 | GND | 19 | GND | | 8 | * | 20 | * | | 9 | * | 21 | * | | 10 | 12V | 22 | 5V | | 11 | 12V | 23 | 5V | | 12 | * | 24 | * | Note: Maximum output voltage: 12V/2A & 5V/3A #### 2.14.3 <Fan connector> The board provides one **4-pin** fan connectors supporting smart fan for CPU cooler and one **3-pin** cooler fan connectors for system. Connector: CPUFAN Type: 4-pin fan wafer connector | Pin | Description | Pin | Description | |-----|---------------------|-----|-------------| | 1 | Ground | 2 | +12V | | 3 | Fan Speed Detection | 4 | Fan Control | Connector: SYSFAN Type: 3-pin fan wafer connector | Piı | Description | Pin | Description | Pin | Description | |-----|-------------|-----|-------------|-----|-------------| | 1 | Ground | 2 | +12V | 3 | Sense | ## 2.15 <Switch and Indicator> The **JFRNT** provides front control panel of the board, such as power button, reset and beeper, etc. Please check well before you connecting the cables on the chassis. Connector: JFRNT Type: onboard 14-pin (2 x 7) 2.54-pitch header | Function | Signal | PIN | | Signal | Function | |----------|--------|-----|----|---------|----------| | IDE LED | HDLED+ | 1 | 2 | PWRLED+ | Power | | IDE EED | HDLED- | 3 | 4 | N/C | LED | | Reset | Reset+ | 5 | 6 | PWRLED- | LLD | | Reset | Reset- | 7 | 8 | SPK+ | | | N/C | | 9 | 10 | N/C | Speaker | | Power | PWRBT+ | 11 | 12 | N/C | Speaker | | Button | PWRBT- | 13 | 14 | SPK- | | # Chapter 3 < System Setup> # 3.1 < Audio Configuration> The board integrates Intel® QM57 with REALTEK® ALC888 codec. It can support 2-channel or 7.1 channel sound under system configuration. Please follow the steps below to setup your sound system. - 1. Install REALTEK HD Audio driver. - 2. Lunch the control panel and Sound Effect Manager. ### 3. Select Speaker Configuration ## 3.2 < Display Properties Setting> Based on Intel QM57 with HD Graphic, the board supports two DACs for display device as different resolution and color bit. Please install the Intel Graphic Driver before you starting setup display devices. 1. Click right button on the desktop to lunch display properties 2. Click **Advanced** button for more specificity setup. 3. This setup options can let you define each device settings. Click Intel® Dual Display Clone to setup the dual display mode as same screen # Chapter 4 <BIOS Setup> The motherboard uses the Phoenix BIOS for the system configuration. The Phoenix BIOS in the single board computer is a customized version of the industrial standard BIOS for IBM PC AT-compatible computers. It supports Intel x86 and compatible CPU architecture based processors and computers. The BIOS provides critical low-level support for the system central processing, memory and I/O sub-systems. The BIOS setup program of the single board computer let the customers modify the basic configuration setting. The settings are stored in a dedicated battery-backed memory, NVRAM, retains the information when the power is turned off. If the battery runs out of the power, then the settings of BIOS will come back to the default setting. The BIOS section of the manual is subject to change without notice and is provided here for reference purpose only. The settings and configurations of the BIOS are current at the time of print, and therefore they may not be exactly the same as that displayed on your screen. To activate CMOS Setup program, press < DEL> key immediately after you turn on the system. The following message "Press DEL to enter SETUP" should appear in the lower left hand corner of your screen. When you enter the CMOS Setup Utility, the Main Menu will be displayed as **Figure 4-1**. You can use arrow keys to select your function, press < Enter> key to accept the selection and enter the sub-menu. Figure 4-1 CMOS Setup Utility Main Screen # Appendix A <I/O Port Pin Assignment> ## A.1 <Serial ATA Port> Connector: SATA1/2/3/4/5/6 Type: 7-pin wafer connector | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |-----|------------|------------|-----|------------|------------|-----| | GND | RSATA_TXP1 | RSATA_TXN1 | GND | RSATA_RXN1 | RSATA_RXP1 | GND | ## A.2 <IrDA Port> Connector: CN IR JCSEL1 must jump to "SIR" Type: 5-pin header for SIR Ports | Pin | Description | |-----|-------------| | 1 | VCC | | 2 | N/C | | 3 | IRRX | | 4 | Ground | | 5 | IRTX | ## A.3 < VGA Port> Connector: CRT Type: 15-pin D-sub female connector on bracket | ı | Pin | Description | Pin | Description | Pin | Description | |---|-----|-------------|-----|-------------|-----|-------------| | | 1 | RED | 6 | Ground | 11 | N/C | | | 2 | GREEN | 7 | Ground | 12 | DDCDA | | | 3 | BLUE | 8 | Ground | 13 | HSYNC | | | 4 | N/C | 9 | N/C | 14 | VSYNC | | | 5 | Ground | 10 | Ground | 15 | DDCCLK | ## A.4 <LAN Port> Connector: RJ45 Type: RJ45 connector with LED on bracket | Pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------------|------|------|------|------|------|------|------|------| | Description | MI0+ | MIO- | MI1+ | MI2+ | MI2- | MI1- | MI3+ | MI3- | ## A.5 <LAN LED Port> Connector: JSPD1/2 Type: 5-pin header for LAN Speed LED connector When Lan speed 10/100Mbps | Pin | Description | |-----|-------------| | 1 | LED- | | 2 | LED+ | When Lan speed 1Gbps | Pin | Description | |-----|-------------| | 1 | LED+ | | 2 | LED- | Connector: JATC1/2 Type: 5-pin header for LAN Activity LED connector | Pin | Description | |-----|-------------| | 1 | LED- | | 2 | LED+ | # Appendix B <Flash BIOS> ### B.1 <Flash Tool> The board is based on Phoenix BIOS and can be updated easily by the BIOS auto flash tool. You can download the tool online at the address below: http://www.phoenix.com/en/home/ http://www.commell.com.tw/Support/Support SBC.htm File name of the tool is "Phlash16.exe", it's the utility that can write the data into the BIOS flash ship and update the BIOS. #### B.2 <Flash BIOS Procedure> - 1. Please make a bootable floppy disk. - 2. Get the last .bin files you want to update and copy it into the disk. - 3. Copy Phlash16.exe to the disk. - 4. Power on the system and flash the BIOS. (Example: C:/Pflash XXX.bin /bbl /cvar /sa) 5. Restart the system. Any question about the BIOS re-flash please contact your distributors or visit the web-site at below: http://www.commell.com.tw/support/support.htm # Appendix C <System Resources> C.1 <I/O Port Address Map> ``` [00000000 - 0000001F] Direct memory access controller [00000000 - 00000CF7] PCI bus [00000020 - 00000021] Programmable interrupt controller [00000024 - 00000025] Programmable interrupt controller [00000028 - 00000029] Programmable interrupt controller [0000002C - 0000002D] Programmable interrupt controller [0000002E - 0000002F] Motherboard resources [00000030 - 00000031] Programmable interrupt controller [00000034 - 00000035] Programmable interrupt controller [00000038 - 00000039] Programmable interrupt controller [0000003C - 0000003D] Programmable interrupt controller [00000040 - 00000043] System timer [0000004E - 0000004F] Motherboard resources T00000050 - 00000531 System timer [00000060 - 00000060] Standard 101/102-Key or Microsoft Natural PS/2 Keyboard [00000061 - 00000061] Motherboard resources [00000063 - 00000063] Motherboard resources [00000064 - 00000064] Standard 101/102-Key or Microsoft Natural PS/2 Keyboard [00000065 - 00000065] Motherboard resources [00000067 - 00000067] Motherboard resources [00000070 - 00000070] Motherboard resources [00000070 - 00000077] System CMOS/real time clock [00000080 - 00000080] Motherboard resources [00000081 - 00000091] Direct memory access controller [00000092 - 00000092] Motherboard resources [00000093 - 0000009F] Direct memory access controller [000000A0 - 000000A1] Programmable interrupt controller [000000A4 - 000000A5] Programmable interrupt controller [000000A8 - 000000A9] Programmable interrupt controller [000000AC - 000000AD] Programmable interrupt controller [000000B0 - 000000B1] Programmable interrupt controller [000000B2 - 000000B3] Motherboard resources [000000B4 - 000000B5] Programmable interrupt controller [000000B8 - 000000B9] Programmable interrupt controller [000000BC - 000000BD] Programmable interrupt controller [000000C0 - 000000DF] Direct memory access controller [000000F0 - 000000F0] Numeric data processor [00000274 - 00000277] ISAPNP Read Data Port [00000279 - 00000279] ISAPNP Read Data Port 7 [000002E8 - 000002EF] Communications Port (COM4) F000002F8 - 000002FF1 Communications Port (COM2) [000003B0 - 000003BB] Intel(R) HD Graphics Family [000003C0 - 000003DF] Intel(R) HD Graphics Family [000003E8 - 000003EF] Communications Port (COM3) [000003F8 - 000003FF] Communications Port (COM1) [00000400 - 00000453] Motherboard resources [00000454 - 00000457] Motherboard resources [00000458 - 0000047F] Motherboard resources ``` #### LV-67H-G User's Manual # C.2 < Memory Address Map> ``` 👰 [000A0000 - 000BFFFF] Intel(R) HD Graphics Family [000A0000 - 000BFFFF] PCI bus [20000000 - 201FFFFF] System board [40000000 - 401FFFFF] System board [7DA00000 - FEAFFFFF] PCI bus [80000000 - 8FFFFFFF] Intel(R) HD Graphics Family [90000000 - 903FFFFF] Intel(R) HD Graphics Family ## [90400000 - 9041FFFF] Intel(R) 82574L Gigabit Network Connection 👰 [90400000 - 904FFFFF] Intel(R) 6 Series/C200 Series Chipset Family PCI Express Root Port 2 - 1C12 ## [90420000 - 90423FFF] Intel(R) 82574L Gigabit Network Connection #2 [90500000 - 9051FFFF] Intel(R) 82574L Gigabit Network Connection #2 👰 [90500000 - 905FFFFF] Intel(R) 6 Series/C200 Series Chipset Family PCI Express Root Port 1 - 1C10 #2 [90520000 - 90523FFF] Intel(R) 82574L Gigabit Network Connection #2 90600000 - 90603FFF] Microsoft UAA Bus Driver for High Definition Audio [90604000 - 906040FF] Intel(R) 6 Series/C200 Series Chipset Family SMBus Controller - 1C22 [90605000 - 9060500F] Intel(R) 6 Series/C200 Series Management Engine Interface - 1C3A 90608000 - 906083FF] Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C26 [90609000 - 906093FF] Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C2D [F8000000 - FBFFFFFF] Motherboard resources [FED00000 - FED003FF] High precision event timer [FED10000 - FED17FFF1 Motherboard resources [FED18000 - FED18FFF] Motherboard resources [FED19000 - FED19FFF] Motherboard resources [FED1C000 - FED1FFFF] Motherboard resources [FED20000 - FED3FFFF] Motherboard resources FED40000 - FED44FFF] PCI bus [FED45000 - FED8FFFF] Motherboard resources [FED90000 - FED93FFF] Motherboard resources [FEE00000 - FEEFFFFF] Motherboard resources [FF000000 - FFFFFFFF] Intel(R) 82802 Firmware Hub Device [FF000000 - FFFFFFFF] Motherboard resources ``` # C.3 < System DMA & IRQ Resources> ## DMA: 4 Direct memory access controller ### IRQ: # Appendix D < Programming GPIO's> The GPIO'can be programmed with the MSDOS debug program using simple IN/OUT commands. The following lines show an example how to do this. GPIO0.....GPIO7 bit0.....bit7 -o 2 E 87 ;enter configuration -o 2E 87 -o 2E 07 -o 2F 09 ;enale GPIO function -o 2E 30 -o 2F 02 ;enable GPIO configuration -o 2E F0 -o 2F xx ;set GPIO as input/output; set '1' for input,'0'for output -0 2E F1 -o 2F xx :if set GPIO's as output,in this register its value can be set Optional: -o 2E F2 -o 2F xx ; Data inversion register ; '1' inverts the current valus of the bits, '0' leaves them as they are -o 2E 30 -o 2F 01 ; active GPIO's For further information, please refer to Winbond W83627DHG datasheet. # Appendix E < Programming Watchdog Timer > The watchdog timer makes the system auto-reset while it stops to work for a period. The integrated watchdog timer can be setup as system reset mode by program. #### **Timeout Value Range** - 1 to 255 - Second or Minute ## **Program Sample** Watchdog timer setup as system reset with 5 second of timeout | 2E, 87 | | |--------|------------------| | 2E, 87 | | | 2E, 07 | | | 2F, 08 | Logical Device 8 | | 2E, 30 | Activate | | 2F, 01 | | | 2E, F5 | Set as Second* | | 2F, 00 | | | 2E, F6 | Set as 5 | | 2F, 05 | | ^{*} Minute: bit 3 = 0; Second: bit 3 = 1 You can select Timer setting in the BIOS, after setting the time options, the system will reset according to the period of your selection. Any advice or comments about our products and service, or anything we can help you with please don't hesitate to contact with us. We will do our best to support you for your products, projects and business. # Global American Inc. Address: 17 Hampshire Drive Hudson, NH 03051 TEL: Toll Free (U.S. Only) 800-833-8999 (603)886-3900 FAX: (603)886-4545 Website: http://www.globalamericaninc.com salesinfo@globalamericaninc.com